A parallel Vlasov solver based on local cubic spline interpolation on patches

نویسندگان

  • Nicolas Crouseilles
  • Guillaume Latu
  • Eric Sonnendrücker
چکیده

A method for computing the numerical solution of Vlasov type equations on massively parallel computers is presented. In contrast with Particle In Cell methods which are known to be noisy, the method is based on a semi-Lagrangian algorithm that approaches the Vlasov equation on a grid of phase space. As this kind of method requires a huge computational effort, the simulations are carried out on parallel machines. To that purpose, we present a local cubic splines interpolation method based on a decomposition domain, each subdomain being devoted to a processor. Hermite boundary conditions between the domains, using ad hoc reconstruction of the derivatives, provide a good approximation of the global solution. The method is applied on various physical configurations which show the ability of the numerical scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite Spline Interpolation on Patches for a Parallel Implementation of Beam Focusing Problems

In this paper we present a novel interpolation technique for Vlasov simulations of intense space charge dominated beams. This new technique enables to localize the cubic spline interpolation generally performed in semi-Lagrangian Vlasov codes and thus to improve the scalability of the parallel version. This new method is applied to the propagation of a potassium beam in a periodic focusing chan...

متن کامل

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

Hermite Spline Interpolation on Patches for a Parallel Solving of the Vlasov-Poisson Equation

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast with Particle In Cell (PIC) methods which are known to be noisy, we propose a semi-Lagrangian type method to discretize the Vlasov equation in the two dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel m...

متن کامل

A comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions

The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov–Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform s...

متن کامل

Parallel Algorithms for Semi-Lagrangian Advection

Numerical time-step limitations associated with the explicit treatment of advection-dominated problems in computational uid dynamics are often relaxed by employing Eulerian-Lagrangian methods. These are also known as semi-Lagrangian methods in the atmospheric sciences. Such methods involve backward time integration of a characteristic equation to nd the departure point of a uid particle arrivin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009